2021“新高考”数学试卷结构

No Comments

随着新高考改革的推进,2021年又有8个省份宣布采用新高考模式。截止目前,采用新高考模式地区暴增至14个省份!在新高考形式下,数学成为了很多同学最为关注的学科。

今天,为大家整理了2021年新高考数学全国I卷的试卷结构和分析!希望能够帮上你!

第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。

①新高考与之前相比, 最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度。

③新高考数学试卷的第4题,第6题和第12题都体现了创新性。第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。弘扬传统文化的同时也鼓励同学们走进传统文化。近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。第6题则体现了聚焦民生,关注社会热点。以新冠疫情为背景,考察了指数与对数函数,这也启示我们,在未来,数学试卷将会越来越贴近我们的现实生活,平时我们对这些内容有所关注,可以减少我们的焦虑感,增强我们做题的自信心。第12题则体现了数学试卷的应用性,以信息熵为背景考察了对数运算及不等式的基本性质。通过这三道题目,传递的信息分别是:重视传统文化,关注社会民生,体现数学的应用性。

④选择题部分与之前的一大区别就是强化了对不等式的考察。新高考解答题中删除了对不等式选讲的考察,因此在选择题之中,不等式的考察有所强化。

⑤除此之外的题目,仍然和之前一样,考察数学的主干知识和一些基本题型。从选择题的运算量来看,该部分重视考察同学们的基本运算和基本思维,总体上运算量不大。

①新高考填空题部分考察内容均为高中数学的主干知识,之前13-14题的位置考察的主要是平面向量与线性规划。这些内容在新高考中都被删除了。因此填空题与之前相比,更重视对于主干知识的考察力度。

②15题联系生活实际,体现了劳动育人的价值导向。考察的内容是三角函数的实际应用,并与扇形形成了综合考点,题目有一定的综合性,学生在作答时需要有一定的耐心认真审题,挖掘题目中的隐含条件。

③试卷的16题考查的是立体几何,创新性强,考察到了立体几何中的轨迹问题,以及扇形的弧长公式。对同学们的空间想象能力和逻辑思维能力都有一定的考察,学生需要充分掌握立体几何线面垂直的判定以及几何图形的性质,才能够把这道题目拿下。

④总体上来看,填空题部分由易到难的分布有利于稳定学生的情绪,又突出了选拔性功能。

从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。

①与之前相比,新高考数学试卷删除了选考题(坐标系与参数方程与不等式选讲)的题目,数列与三角函数由原来的每年二选一考试,变成了均为必考题,凸显了对于主干知识的重视.

②与之前相比,出现了新题型,从三个条件中选一个条件作答,体现了高考试卷的灵活性,同时也给考生以选择的余地,有利于考生选择一个自己擅长的条件参与作答,在一定程度上有利于增加得分率。

③整体来看,解答题主干知识考察的内容较为常规,都是平常大量训练的题目,与之前相比,并没有很大的区别。在作答时,学生不会有一种恐惧感,有利于稳定考生的情绪。

④总体来看,解答题部分与原来的题型基本保持一致,突出了主干知识的核心考点,没有出现偏,难,怪的试题。考点常规,这也告诉我们平时要注重基础知识与基本能力。不需要过分去钻研一些偏,难,怪的题目。

新高考由于删除了选考题和之前的一些考点(如三视图,程序框图,线性规划等等),主干知识在全卷所占的比重达到了88%,总计132分。因此,在新高考当中 三角函数,数列,统计与概率,立体几何,函数与导数,解析几何的地位变得更加重要。拿下这六个板块,就能够在考试中占据优势地位。对于主干知识要更加深入的去理解他们。但是从新高考传递的信号来看,大家也不需要过分的去钻研偏难怪的试题,夯实基础,再不断地提高能力。同时,同学们要 关注数学的发展,关注传统文化中的数学,关注社会民生,社会热点,树立创新意识,就能够在新高考当中脱颖而出。

2021年高考答题技巧之高考数学大题的最佳解题技巧,和大家分享,为您的高考助一臂之力。

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

五、圆锥曲线、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

高考数学对于大多数的学生来说都是很有挑战力的。高考数学想要得高分,先定个学习小目标,并掌握答题技巧。

发表回复

您的电子邮箱地址不会被公开。